Меню

Абинхав Сагар продемонстрировал как можно использовать ИИ при анализе криптоактивов

Выключить
BLOCKHAIN MEDIA

Исследователь из Технологического института Веллора в Индии предложил метод прогнозирования цен криптоактивов с использованием нейронной сети с долгой краткосрочной памятью (LSTM).

Специалист по обработке и анализу данных Абинхав Сагар (Abinhav Sagar) продемонстрировал в своем блоге четырехэтапный процесс использования технологии машинного обучения для прогнозирования цен криптоактивов в режиме реального времени, которые «относительно непредсказуемы» по сравнению с традиционными рынками.

По мнению Сагара, хотя машинное обучение достигло некоторого успеха в прогнозировании цен на фондовом рынке, его применение в индустрии криптовалют было ограничено. В подтверждение он заявил, что цены криптоактивов колеблются в связи с быстрым развитием технологий, а также экономическими и политическими факторами и вопросами безопасности.

Предложенный Сагаром четырехэтапный метод включает:

-сбор данных о криптовалюте в режиме реального времени;

-подготовку данных для обучения нейронной сети;

-тестирование прогноза с использованием нейронной сети LSTM;

-визуализацию результатов прогноза.

Для обучения сети Сагар использовал , учитывая цену, объем торгов, наибольшее и наименьшее значение цены.

Он опубликовал информацию о проекте на GitHub и описал функции, которые он использовал для нормализации значений данных при подготовке к машинному обучению. Прежде чем составить график и визуализировать результаты сетевых прогнозов, Сагар отметил, что в качестве показателя оценки он использовал абсолютную погрешность среднего значения, которая измеряет среднюю величину ошибок в наборе прогнозов без учета их направления.

Визуализация Сагара прогноза цены криптовалюты в режиме реального времени с использованием нейронной сети LSTM. Источник: towardsdatascience.com

Машинное обучение уже не первый раз применяется в индустрии криптовалют и блокчейна для получения статистических данных. Летом аналитическая компания Elliptic в сотрудничестве с Массачусетским технологическим институтом (MIT) исследовали более 200 000 транзакций в сети Биткоина на предмет их связи с преступной деятельностью. Для того, чтобы отсортировать 203 769 транзакций на общую сумму $6 млрд, исследовательская группа задействовала алгоритм с машинным обучением.

Источник: https://bits.media/